<< 1 >>
Rating: Summary: Definitely a good first text Review: I bought this book because I have been looking for a Introductory analysis text that isn't too advanced, but yet doesn't gloss over the essential stuff, and I found it in Lay's book. For the self-studier, this book is excellent! I have several books on analysis: Shilov, Kolomogorov, Rosenlicht, Ross,etc... For the beginner, this book is superior to all of them. A plethora of examples. Also, a good range of problems:from straight forward problems requiring only the use of a definition to more advanced problems requiring a little thought. If you already have had some Analysis, then this book is probably not for you. But, if you are a student who wants to learn Analysis on your own, then this book would be hard to beat. After this book, one should be able to tackle "Papa Rudin". For according to Rudin, all that is needed to study his "Real and Complex Analysis" tome, is the first seven chapters of his "Principles of Mathematical Analysis". This book covers all that Rudin covers with the exception of Riemann-Stieltjes integration. On the whole, this is a great start! If proof-based math is new to you, then you will appreciate the first chapter on proofs. Would have given five stars, but I would have liked to seen Riemann-Stieltjes integration. That's really only nit picking, though.
Rating: Summary: This book was surprisingly good Review: I didn't think this book was going to be very good, but the author has "proved" me wrong ;-) This book starts out so basic that in my class (which was the first analysis course in our math department) we actually skipped the first 1/3 or so of the book. The first 9 or 10 sections consist of stuff like basic set theory, logic, definition of a function, etc. I would think that even the most elementary Analysis books would completely leave this out and expect that the reader is already familiar with this. So if you need it, this book will be a good resource for you.Then the book goes into a very nice introduction to topology. Basic concepts like open/closed sets, accumulation points, compact sets, etc. Topology can be a little intimidating simply because it's _so_ abstract, but this book makes the basic concepts very easy to understand, and prepares one for a more advanced course in topology. Alot of (good) Elementary Analysis books leave topology out, but I'm glad this book contained it. It is a very interesting subject. All the material in the book is explained probably about as easily as the concepts CAN be explained. If you still have trouble with it, you might consider a different major. Not to say that this book transforms a very difficult subject into a pathetically easy piece of cake because that's impossible, but the material is presented probably as easily as it can be in order to maintain precision and detail (which is the whole point of Analysis). The book is definitely not running short in the examples or end-of-section problems department, so that is another plus. The problems at the end of each section range in difficulty from problems that almost exactly match an example worked in detail in the section, to fairly challenging problems. With enough time though the average student could probably do every problem at the end of every section. I'd recommend this book for self study as well as a supplement to any introductory analysis course. If you have already have exposure to rigorous proof of calculus theorems, then this book will probably be too basic for you. The reason this book got 4 stars instead of 5 is because of its utterly ridiculous price. Just as good is Elementary Analysis: The Theory of Calculus, ISBN: 038790459X, except that it doesn't include the section on Topology ...
<< 1 >>
|