Home :: Books :: Science  

Arts & Photography
Audio CDs
Audiocassettes
Biographies & Memoirs
Business & Investing
Children's Books
Christianity
Comics & Graphic Novels
Computers & Internet
Cooking, Food & Wine
Entertainment
Gay & Lesbian
Health, Mind & Body
History
Home & Garden
Horror
Literature & Fiction
Mystery & Thrillers
Nonfiction
Outdoors & Nature
Parenting & Families
Professional & Technical
Reference
Religion & Spirituality
Romance
Science

Science Fiction & Fantasy
Sports
Teens
Travel
Women's Fiction
Fermat's Last Theorem: A Genetic Introduction to Algebraic Number Theory (Graduate Texts in Mathematics)

Fermat's Last Theorem: A Genetic Introduction to Algebraic Number Theory (Graduate Texts in Mathematics)

List Price: $49.95
Your Price: $42.96
Product Info Reviews

<< 1 >>

Rating: 4 stars
Summary: Read this if you're seriously interested in math.
Review: There was a great burst of excitement, and several popular books, when Andrew Wiles proved "Fermat's last theorem". The popular books are fine, but they don't address the deepest issue: among all the many long-standing unsolved problems in number theory that are easy to state but resistant to solution, why did "Fermat's last theorem" attract the efforts of so many top-flight mathematicians: Euler, Sophie Germain, Kummer, and many others? The problem itself has no useful application or extension, and as stated seems like just another piece of obstinate trivia. So why is it mathematically interesting?

The answer, of course, is that attacks on the problem revealed deep and important connections between elementary number theory and various other branches of mathematics, such as the theory of rings. Thus, as so often in mathematics, the importance of the problem lies in where it leads the mind, rather than in the problem itself. Harold M. Edwards' book

is a minor classic of exposition, showing how the instincts of top-flight research mathematicians lead them to fruitful work from a seemingly unimportant starting point. I'm only sorry that Professor Edwards seems never to have completed the second volume he had hoped to write.

Thus book deserves to be read by a much larger audience than it has gotten; in particular, I believe every graduate student in math who hopes to do good research, regardless of specialty, would benefit from reading it. Beyond that, any mathematically inclined reader with a modicum of training in math, is likely to find this a fascinating book.

Rating: 5 stars
Summary: great book
Review: There was a great burst of excitement, and several popular books, when Andrew Wiles proved "Fermat's last theorem". The popular books are fine, but they don't address the deepest issue: among all the many long-standing unsolved problems in number theory that are easy to state but resistant to solution, why did "Fermat's last theorem" attract the efforts of so many top-flight mathematicians: Euler, Sophie Germain, Kummer, and many others? The problem itself has no useful application or extension, and as stated seems like just another piece of obstinate trivia. So why is it mathematically interesting?

The answer, of course, is that attacks on the problem revealed deep and important connections between elementary number theory and various other branches of mathematics, such as the theory of rings. Thus, as so often in mathematics, the importance of the problem lies in where it leads the mind, rather than in the problem itself. Harold M. Edwards' book

is a minor classic of exposition, showing how the instincts of top-flight research mathematicians lead them to fruitful work from a seemingly unimportant starting point. I'm only sorry that Professor Edwards seems never to have completed the second volume he had hoped to write.

Thus book deserves to be read by a much larger audience than it has gotten; in particular, I believe every graduate student in math who hopes to do good research, regardless of specialty, would benefit from reading it. Beyond that, any mathematically inclined reader with a modicum of training in math, is likely to find this a fascinating book.

Rating: 5 stars
Summary: great book
Review: This is a great book. If you want to learn algebraic number theory from a very example/computational oriented book, then this is the book you want. it really has a lot of stuff in it. all other graduate books are theory without examples or motivation. this book is the exact opposite. the only drawback is that it doesn't use any modern algebra, but you can figure out how to shorten the arguments with algebra if you wanted to.


<< 1 >>

© 2004, ReviewFocus or its affiliates