Home :: Books :: Science  

Arts & Photography
Audio CDs
Audiocassettes
Biographies & Memoirs
Business & Investing
Children's Books
Christianity
Comics & Graphic Novels
Computers & Internet
Cooking, Food & Wine
Entertainment
Gay & Lesbian
Health, Mind & Body
History
Home & Garden
Horror
Literature & Fiction
Mystery & Thrillers
Nonfiction
Outdoors & Nature
Parenting & Families
Professional & Technical
Reference
Religion & Spirituality
Romance
Science

Science Fiction & Fantasy
Sports
Teens
Travel
Women's Fiction
Concrete Mathematics: A Foundation for Computer Science (2nd Edition)

Concrete Mathematics: A Foundation for Computer Science (2nd Edition)

List Price: $59.99
Your Price: $51.45
Product Info Reviews

<< 1 2 3 >>

Rating: 2 stars
Summary: Fragmented writing style of some advanced math topics
Review: This statement from a previous review:
"Very bright high school students have gotten through this text with little difficulty"
I dare you to present Hypergeometric functions in front of a highschool student... Most graduate students would be challenged with that!

This text is neither beautiful or elegant, and the little cutesy notes in the margins are distracting and childish.
(they are more memorable than the actual text)

Once the simplistic Towers of Hanoi and Josephus problem are presented, the authors totally ignore any problem solving and just blast into pure mathematical manipulations that are uninitiated. Why bother with a trivial example at first, and no examples for the remaining most difficult concepts?

Throughout the text are statements like "Some sequences of numbers arise so often that we give them special names"
Oh really? Where and why do they occur?
What about the sequences that do not occur frequently? The authors see no need to explain this. (Knuth: check out my expensive 3 book series, and dig for a few months)

And statements in the middle of chapters like:

"We now come to the most important idea in the whole book: generating functions."
Oh really? Why are they so important? (this is never explained) If so, why doesn't it have its own chapter, instead of being buried in a chapter on binomial coefficients without a lead-up?

Find a closed form for:
f[n] = f[n-f[n-1]] + f[n-f[n-2]]; where f[n] = n/2
(You could memorize and learn all the math in this book, and it would never help to solve this. It handily skirts the tough fundamental questions about math.)

I've never read a more fragmented presentation than this book, for important concepts.

You get the distinct impression of little kids "tee hee, look at the cool manipulations I can do, and you cant...see how smart I am??"....Knuth is laughing all the way to the bank.

Rating: 5 stars
Summary: Please Be Discrete
Review: What is "concrete" math, as opposed to other types of math? The authors explain that the title comes from the blending of CONtinuous and disCRETE math, two branches of math that many seem to like to keep asunder, though each occurs in the foundation of the other. The topics in the book, such as sums, generating functions, and number theory, are actually standard discrete math topics; however, the treatment in this text shows the inherent continuous (read: calculus) undergirding of the topics. Without calculus, generating functions would not have come to mind and their tremendous power could not be put to use in figuring out series.

The smart-aleck marginal notes notwithstanding, this is a serious math book for those who are willing to dot every i and cross every t. Unlike most math texts (esp. graduate math texts), nothing is omitted along the way. Notation is explained (=very= important), common pitfalls are pointed out (as opposed to the usual way students come across them -- by getting back bleeding exams), and what is important and what is =not= as important are indicated.

Still, I cannot leave the marginal notes unremarked; some are serious warnings to the reader. For example, in the introduction, one note remarks "I would advise the casual student to stay away from this course." Notes that advise one to skim, and there are a few, should be taken seriously. All the marginal notes come from the TAs who had to help with the text, and thus have a more nitty-gritty understanding of the difficulties students are likely to face. Still, there are plenty of puns and bad jokes to amuse the text-reader for hours: "The empty set is pointless," "But not Imbesselian," and "John .316" made me chuckle, but you have to find them for yourself.

To someone who has been through the rigors of math grad school, this book is a delight to read; to those who have not, they must keep in mind that this is a serious text and must be prepared to do some real work. Very bright high school students have gotten through this text with little difficulty. I want to note ahead of time - some of the questions in the book are serious research topics. They don't necessarily tell you that when they give you the problem; if you've worked on the problem for a week, you should turn to the answers in the back to check that there really is a solution.

That said, I would highly recommend this book to math-lovers who want some rigorous math outside of the usual fare. The formulas in here can actually come in handy "in real life", especially if one has to use math a lot.

Rating: 5 stars
Summary: Please Be Discrete
Review: What is "concrete" math, as opposed to other types of math? The authors explain that the title comes from the blending of CONtinuous and disCRETE math, two branches of math that many seem to like to keep asunder, though each occurs in the foundation of the other. The topics in the book, such as sums, generating functions, and number theory, are actually standard discrete math topics; however, the treatment in this text shows the inherent continuous (read: calculus) undergirding of the topics. Without calculus, generating functions would not have come to mind and their tremendous power could not be put to use in figuring out series.

The smart-aleck marginal notes notwithstanding, this is a serious math book for those who are willing to dot every i and cross every t. Unlike most math texts (esp. graduate math texts), nothing is omitted along the way. Notation is explained (=very= important), common pitfalls are pointed out (as opposed to the usual way students come across them -- by getting back bleeding exams), and what is important and what is =not= as important are indicated.

Still, I cannot leave the marginal notes unremarked; some are serious warnings to the reader. For example, in the introduction, one note remarks "I would advise the casual student to stay away from this course." Notes that advise one to skim, and there are a few, should be taken seriously. All the marginal notes come from the TAs who had to help with the text, and thus have a more nitty-gritty understanding of the difficulties students are likely to face. Still, there are plenty of puns and bad jokes to amuse the text-reader for hours: "The empty set is pointless," "But not Imbesselian," and "John .316" made me chuckle, but you have to find them for yourself.

To someone who has been through the rigors of math grad school, this book is a delight to read; to those who have not, they must keep in mind that this is a serious text and must be prepared to do some real work. Very bright high school students have gotten through this text with little difficulty. I want to note ahead of time - some of the questions in the book are serious research topics. They don't necessarily tell you that when they give you the problem; if you've worked on the problem for a week, you should turn to the answers in the back to check that there really is a solution.

That said, I would highly recommend this book to math-lovers who want some rigorous math outside of the usual fare. The formulas in here can actually come in handy "in real life", especially if one has to use math a lot.

Rating: 5 stars
Summary: Please Be Discrete
Review: What is "concrete" math, as opposed to other types of math? The authors explain that the title comes from the blending of CONtinuous and disCRETE math, two branches of math that many seem to like to keep asunder, though each occurs in the foundation of the other. The topics in the book, such as sums, generating functions, and number theory, are actually standard discrete math topics; however, the treatment in this text shows the inherent continuous (read: calculus) undergirding of the topics. Without calculus, generating functions would not have come to mind and their tremendous power could not be put to use in figuring out series.

The smart-aleck marginal notes notwithstanding, this is a serious math book for those who are willing to dot every i and cross every t. Unlike most math texts (esp. graduate math texts), nothing is omitted along the way. Notation is explained (=very= important), common pitfalls are pointed out (as opposed to the usual way students come across them -- by getting back bleeding exams), and what is important and what is =not= as important are indicated.

Still, I cannot leave the marginal notes unremarked; some are serious warnings to the reader. For example, in the introduction, one note remarks "I would advise the casual student to stay away from this course." Notes that advise one to skim, and there are a few, should be taken seriously. All the marginal notes come from the TAs who had to help with the text, and thus have a more nitty-gritty understanding of the difficulties students are likely to face. Still, there are plenty of puns and bad jokes to amuse the text-reader for hours: "The empty set is pointless," "But not Imbesselian," and "John .316" made me chuckle, but you have to find them for yourself.

To someone who has been through the rigors of math grad school, this book is a delight to read; to those who have not, they must keep in mind that this is a serious text and must be prepared to do some real work. Very bright high school students have gotten through this text with little difficulty. I want to note ahead of time - some of the questions in the book are serious research topics. They don't necessarily tell you that when they give you the problem; if you've worked on the problem for a week, you should turn to the answers in the back to check that there really is a solution.

That said, I would highly recommend this book to math-lovers who want some rigorous math outside of the usual fare. The formulas in here can actually come in handy "in real life", especially if one has to use math a lot.

Rating: 4 stars
Summary: Steep learning curve, the definitive prerequisite for TAOCP.
Review: Why I got this book:
It's a great feeling to know how computers work, when I decided that I want to make a career and a life out of computers, as its truly a passion for me, I delved deeper, discovering the true beauty in the Science part of Computer Science, so I decided to get Donald Knuth' "The Art of Computer Programming" - to describe that seminal, huge work, it's like biting more than you can chew while trying to drink from a fire hose, moreover, the technical and mathematical prerequisites for the work are sometimes too demanding, they require a huge amount of experience with discrete mathematics, although I had some lectures and read some books, none came close "Concrete Mathematics", it covers, from ground up (though with a dangerously steep learning curve) a lot of discrete mathematics topics, it is by far the most extensive work I've read about Sums and really teaches the algorithmic problem solving thinking skill the authors preach so much about, with small amusing comments written by actual students of this course, a comfortable format, and very good writing skills, you can feel these guys are great professors who enjoy this material and are passionate about teaching it.

Recommended, though some better, less steep, introductionary text books are probably out there.

Enjoy.

Rating: 5 stars
Summary: GREAT book. Used it for wonderful read & wonderful resource
Review: Wonderful for so many things. The way it tends to Generating funcions, asymptotics, and so on and so on. It's SO good.


<< 1 2 3 >>

© 2004, ReviewFocus or its affiliates